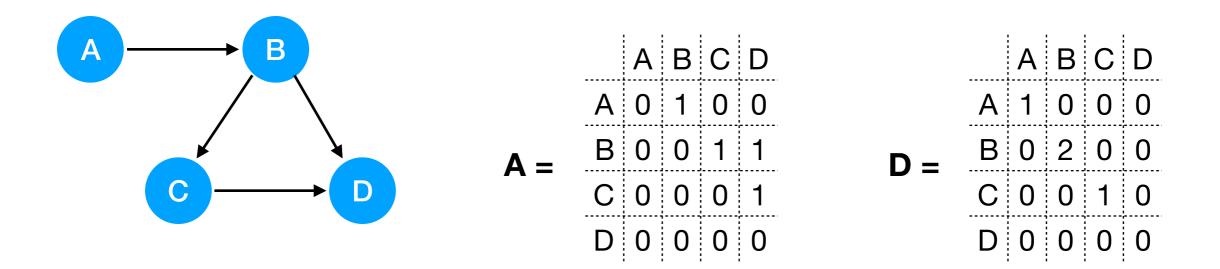
SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl Max Welling University of Amsterdam Canadian Institute for Advanced Research (CIFAR) M.Welling@uva.nl

Slides by Nolan Dey

Graph Notation



- A = adjacency matrix —> defines graph edges
- D = degree matrix —> defines number of edges per node
- $\hat{A} = A + I$
- $\hat{D} = D + I$

Network Notation

- N = Number of nodes
- d^l = Number of node features at l^{th} layer
- F^l = Hidden representation at l^{th} layer
- $F^l \to (N \times d^l)$
- $F^0 = X$
- $A \rightarrow (N \times N)$

GCN Layer

- Fully connected layer: $F^l = \sigma(F^{l-1}W^l + b)$
- GCN layer: $F^{l} = \sigma(\text{transform}(\text{aggregate}(A, F^{l-1}), W^{l}))$
- aggregate purpose: Take a weighted sum of features from adjacent nodes (analog of convolution)
- transform purpose : Transform aggregated features using a weight matrix

• transform
$$(M, W^l) = MW^l$$

• GCN layer:
$$F^l = \sigma(\text{aggregate}(A, F^{l-1})W^l)$$

Sum Aggregation

• aggregate(A, F^{l-1}) = AF^{l-1}

А				Х			AX		
[[0	1	0	0]	[[0	0]]]	1	-1]
[0]	0	1	1]	[1	-1]	[5	-5]
[0]	1	0	0]	[2	-2]	[1	-1]
[1	0	1	0]]	[3	-3]]	[2	-2]]

- Pros: Aggregated features are the sum of the features of neighbouring nodes
- Cons: A node's own features do not get propagated

Sum Aggregation 2

• aggregate(
$$A, F^{l-1}$$
) = $\hat{A}F^{l-1}$

• $\hat{A} = A + I$

A_hat			Х			A_hat @ X	
[[1.	1.	0.	0.]	[[0	0]	[[11.]
[0.	1.	1.	1.]	[1	-1]	[66.]
[0.	1.	1.	0.]	[2	-2]	[33.]
[1.	0.	1.	1.]]	[3	-3]]	[55.]]

- Pros: Aggregated features are the sum of a node's own features and the features of neighbouring nodes
- Cons: Nodes with more connections have features of higher magnitude

Mean Aggregation

• aggregate(A, F^{l-1}) = $\hat{D}^{-1}\hat{A}F^{l-1}$

- Pros: Aggregated features are the average of a node's own features and the features of neighbouring nodes
- Cons: Dynamics are "not interesting enough"

Spectral Aggregation

- aggregate(A, F^{l-1}) = $\hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} F^{l-1}$
- First order approximation of a spectral graph convolution

What are GCNs?

- GCN layer: $F^l = \sigma(\text{transform}(\text{aggregate}(A, F^{l-1}), W^l))$
- transform $(M, W^l) = MW^l$
- aggregate(A, F^{l-1}) = $\hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} F^{l-1}$
- GCN layer output: $F^l = ReLU(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}F^{l-1}W^l)$

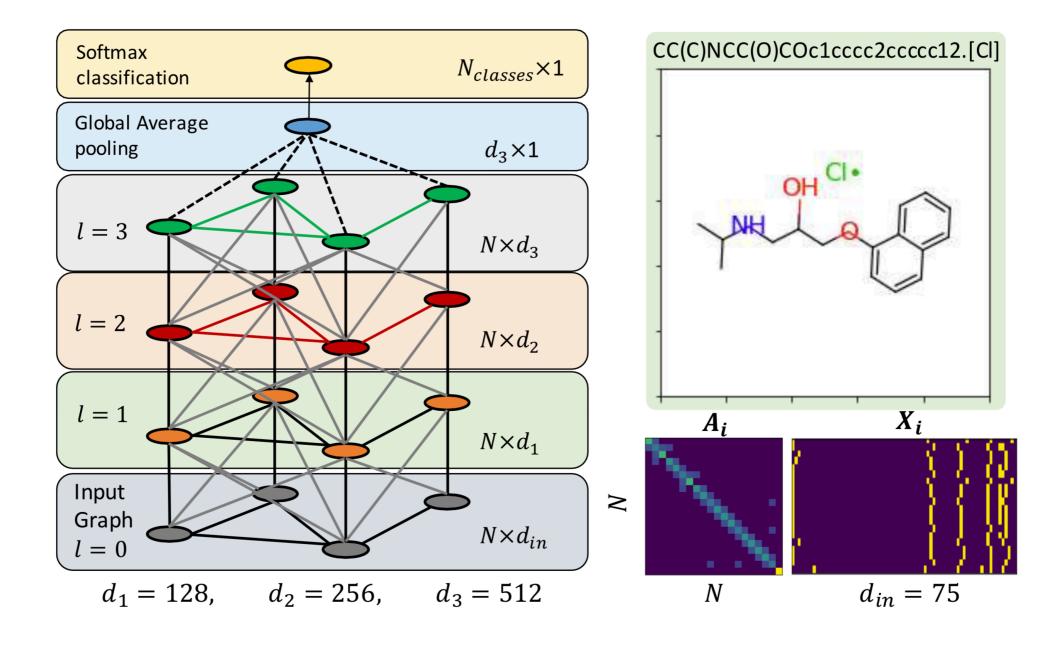
Sample Dataset: Blood Brain Barrier Penetration (BBBP)

	name	p_np	smiles
num			
1	Propanolol	1	[CI].CC(C)NCC(O)COc1cccc2ccccc12
2	Terbutylchlorambucil	1	C(=O)(OC(C)(C)C)CCCc1ccc(cc1)N(CCCI)CCCI
3	40730	1	c12c3c(N4CCN(C)CC4)c(F)cc1c(c(C(O)=O)cn2C(C)CO
4	24	1	C1CCN(CC1)Cc1cccc(c1)OCCCNC(=O)C
5	cloxacillin	1	Cc1onc(c2ccccc2Cl)c1C(=O)N[C@H]3[C@H]4SC(C)(C)



- Binary Classification
- 2050 molecules
 - 1567 penetrate the blood brain barrier
 - 483 do not penetrate the blood brain barrier
- Applications in drug design

Sample Architecture



Applications

- Image classification
- Recommender systems
- Path planning
- 3D point cloud segmentation and classification
- Molecular classification

Thank you!